160 research outputs found

    Transcriptional Pausing Caught in the Act

    Get PDF
    Single-molecule techniques now permit the tracking of a transcription complex along a DNA template in real time and to 1 bp resolution. As reported in this issue of Cell, Herbert et al. (2006) exploit this approach to study a central component of transcription regulation, the sequence-dependent pausing of RNA polymerase during transcript elongation

    Mapping DNA conformations and interactions within the binding cleft of bacteriophage T4 single-stranded DNA binding protein (gp32) at single nucleotide resolution

    Get PDF
    12 pagesIn this study, we use single-stranded DNA (oligo-dT) lattices that have been position-specifically labeled with monomer or dimer 2-aminopurine (2-AP) probes to map the local interactions of the DNA bases with the nucleic acid binding cleft of gp32, the single-stranded binding (ssb) protein of bacteriophage T4. Three complementary spectroscopic approaches are used to characterize these local interactions of the probes with nearby nucleotide bases and amino acid residues at varying levels of effective protein binding cooperativity, as manipulated by changing lattice length. These include: (i) examining local quenching and enhancing effects on the fluorescence spectra of monomer 2-AP probes at each position within the cleft; (ii) using acrylamide as a dynamic-quenching additive to measure solvent access to monomer 2-AP probes at each ssDNA position; and (iii) employing circular dichroism spectra to characterize changes in exciton coupling within 2-AP dimer probes at specific ssDNA positions within the protein cleft. The results are interpreted in part by what we know about the topology of the binding cleft from crystallographic studies of the DNA binding domain of gp32 and provide additional insights into how gp32 can manipulate the ssDNA chain at various steps of DNA replication and other processes of genome expression.NIH-NIGMS grant [GM-15792 to P.H.v.H., Andrew H. Marcus, co-PIs]; Dreyfus Senior Mentor Undergraduate Research Award (to P.H.v.H,) that provided partial support for B.C. and A.D.; Monmouth University Creativity and Research Grant (to D.J., in part). Funding for open access charge: University of Oregon Library System; NIH Grant

    Dinucleotides as simple models of the base stacking-unstacking component of DNA 'breathing' mechanisms

    Get PDF
    14 pagesRegulatory protein access to the DNA duplex 'interior' depends on local DNA 'breathing' fluctuations, and the most fundamental of these are thermally-driven base stacking-unstacking interactions. The smallest DNA unit that can undergo such transitions is the dinucleotide, whose structural and dynamic properties are dominated by stacking, while the ion condensation, cooperative stacking and inter-base hydrogen-bonding present in duplex DNA are not involved. We use dApdA to study stacking-unstacking at the dinucleotide level because the fluctuations observed are likely to resemble those of larger DNA molecules, but in the absence of constraints introduced by cooperativity are likely to be more pronounced, and thus more accessible to measurement. We study these fluctuations with a combination of Molecular Dynamics simulations on the microsecond timescale and Markov State Model analyses, and validate our results by calculations of circular dichroism (CD) spectra, with results that agree well with the experimental spectra. Our analyses show that the CD spectrum of dApdA is defined by two distinct chiral conformations that correspond, respectively, to a Watson-Crick form and a hybrid form with one base in a Hoogsteen configuration. We find also that ionic structure and water orientation around dApdA play important roles in controlling its breathing fluctuations.This research was supported by a grant from the National Institute of Child Health and Human Development (5R01HD081 362-05) awarded to L.S. and N.B.A. The funding sources had no role in the study design, data collection and analysis, or submission process

    Characterization of the 6-methyl isoxanthopterin (6-MI) base analog dimer, a spectroscopic probe for monitoring guanine base conformations at specific sites in nucleic acids

    Get PDF
    We here characterize local conformations of site-specifically placed pairs of guanine (G) residues in RNA and DNA, using 6-methyl isoxanthopterin (6-MI) as a conformational probe. 6-MI is a base analog of G and spectroscopic signals obtained from pairs of adjacent 6-MI residues reflect base–base interactions that are sensitive to the sequence context, local DNA conformation and solvent environment of the probe bases. CD signals show strong exciton coupling between stacked 6-MI bases in double-stranded (ds) DNA; this coupling is reduced in single-stranded (ss) DNA sequences. Solvent interactions reduce the fluorescence of the dimer probe more efficiently in ssDNA than dsDNA, while self-quenching between 6-MI bases is enhanced in dsDNA. 6-MI dimer probes closely resemble adjacent GG residues, in that these probes have minimal effects on the stability of dsDNA and on interactions with solvent additive betaine. They also serve as effective template bases, although further polymerase-dependent extension of DNA primers past 6-MI template bases is significantly inhibited. These probes are also used to monitor DNA ‘breathing’ at model replication forks. The 6-MI dimer probe can serve in many contexts as a useful tool to investigate GG conformations at specific sites within the nucleic acid frameworks of functioning macromolecular machines in solution

    DNA models of trinucleotide frameshift deletions: the formation of loops and bulges at the primer–template junction

    Get PDF
    Although mechanisms of single-nucleotide residue deletion have been investigated, processes involved in the loss of longer nucleotide sequences during DNA replication are poorly understood. Previous reports have shown that in vitro replication of a 3′-TGC TGC template sequence can result in the deletion of one 3′-TGC. We have used low-energy circular dichroism (CD) and fluorescence spectroscopy to investigate the conformations and stabilities of DNA models of the replication intermediates that may be implicated in this frameshift. Pyrrolocytosine or 2-aminopurine residues, site-specifically substituted for cytosine or adenine in the vicinity of extruded base sequences, were used as spectroscopic probes to examine local DNA conformations. An equilibrium mixture of four hybridization conformations was observed when template bases looped-out as a bulge, i.e. a structure flanked on both sides by duplex DNA. In contrast, a single-loop structure with an unusual unstacked DNA conformation at its downstream edge was observed when the extruded bases were positioned at the primer–template junction, showing that misalignments can be modified by neighboring DNA secondary structure. These results must be taken into account in considering the genetic and biochemical mechanisms of frameshift mutagenesis in polymerase-driven DNA replication

    Beyond the call of duty: Why customers contribute to firm-hosted commercial online communities

    Get PDF
    Firm-hosted commercial online communities, in which customers interact to solve each other's service problems, represent a fascinating context to study the motivations of collective action in the form of knowledge contribution to the community. We extend a model of social capital based on Wasko and Faraj (2005) to incorporate and contrast the direct impact of commitment to both the online community and the host firm, as well as reciprocity, on quality and quantity of knowledge contribution. In addition, we examine the moderating influence of three individual attributes that are particularly relevant to the firm-hosted community context: perceived informational value, sportsmanship, and online interaction propensity. We empirically test our framework using self-reported and objective data from 203 members of a firm-hosted technical support community. In addition to several interesting moderating effects, we find that a customer's online interaction propensity, commitment to the community, and the informational value s/he perceives in the community are the strongest drivers of knowledge contribution
    corecore